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Two tandem flexible flags in viscous flow were modelled by numerical simulation
using an improved version of the immersed boundary method. The flexible flapping
flag and the vortices produced by an upstream flag were found to interact via either
a constructive or destructive mode. These interaction modes gave rise to significant
differences in the drag force acting on the downstream flapping flag in viscous flow.
The constructive mode increased the drag force, while the destructive mode decreased
the drag force. Drag on the downstream flexible body was investigated as a function
of the streamwise and spanwise gap distances, and the bending coefficient of the
flexible flags at intermediate Reynolds numbers (200 � Re � 400).
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1. Introduction
Avian flocking and fish schooling behaviours have inspired investigations into the

fluid dynamics that govern the motion of individuals in the context of a larger group.
Fish schooling, which falls within the field of marine propulsion and manoeuvring
(Fish 1999; Fish & Lauder 2006), is not merely a social behaviour; schooling improves
the efficiency of movement within the fluid environment. Inspired by schooling from
a hydrodynamic perspective, a group of aquatic animals can be modelled as a
collection of individuals arranged in tandem or side-by-side. In a tandem arrangement,
an upstream structure strongly influences a downstream structure through vortex
shedding in the fluid medium. The interaction mechanism in a queue has been
studied both experimentally and numerically using a variety of rigid body models
(Zdravkovich 1985; Streitlien, Triantafyllou & Triantafyllou 1996; Deng, Shao & Yu
2007; Eldredge & Pisani 2008) to show that downstream rigid bodies in a queue gain
advantages from the upstream bodies through drag reduction.

Fish and flags, however, are slender flexible bodies that continuously balance
the bending forces that act on their bodies via inertia, viscosity and flow pressure.
Flexible bodies employ drag reduction mechanisms that differ from those experienced
by rigid bodies. Studies using two stationary rigid bodies or flapping rigid bodies
within a prescribed range of motion may miss the key beneficial advantages from
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the schooling behaviour of flexible bodies in a fluid flow. Müller (2003) and Zhang
et al. (2000) recently described the motions of a flexible filament in a flow as a model
for fish and flag hydrodynamics. Other studies have described not only a single flag
in a flow, but also flags in a side-by-side or tandem arrangement with remarkable
results and insights (Zhu & Peskin 2002; Farnell, David & Barton 2004; Connel
& Yue 2007; Huang, Shin & Sung 2007; Jia et al. 2007; Alben 2008, 2009; Eloy
et al. 2008; Jia & Yin 2008; Ristroph & Zhang 2008; Michelin & Llewellyn Smith
2009; Schouveiler & Eloy 2009; Zhu 2009). Ristroph & Zhang (2008) showed that
in a tandem arrangement of flexible flags, the upstream flag experiences reduced
drag relative to the downstream flag. Alben (2009) then displayed this anomalous
hydrodynamic drafting in his numerical simulation using an inviscid vortex sheet
model. He proposed that the wake behind an upstream flag influences the intensified
synchronization of flapping, and the wake-mediated drafting was found to be a
function of the gap distance between the flag pairs. Furthermore, Alben (2009) showed
that regardless of the gap distance erratic flapping with high-oscillation frequencies
does not cause the anomalous drafting in a certain range of the gap distances, which
contradicts Ristroph & Zhang (2008). Moreover, Zhu (2009) studied the interaction
of two tandem flags in a low-Reynolds-number range (40 � Re � 220). He observed
that the upstream flag has less drag than the downstream one (i.e. the anomalous
hydrodynamic drafting) when self-sustained flapping is set in, but the opposite when
the flags keep the static stretched-straight state at a small enough Reynolds number.

This study provides insights into the manoeuvring dynamics of coupled flexible
bodies in viscous flow, with intriguing results: within a queue, the flapping downstream
flag can experience a distinct drag reduction and/or a drag enhancement. Moreover,
the vortices shed by the upstream flag interact with the downstream flag via two modes
of interaction, which explains the significant drag changes experienced by the flexible
structures: (i) a constructive mode or (ii) a destructive mode. Although Alben (2009)
also reported the constructive and destructive interference between the flags’ vortex
wakes in inviscid flow, it was obscure how the wakes interact with the downstream flag
when the fluid viscosity is included. Obviously, the coupled phenomena become more
complicated in viscous flow because vortices could be shed not only from the trailing
edge of the flag, but also from the leading edge. The Reynolds numbers selected in
this study range from 200 to 400, which are within the gap between the potential
flow simulations of Alben (2009) and the small-Reynolds-number simulations of Zhu
(2009). The flapping amplitude and the phase difference between two flags were
examined with respect to the interaction modes and the drag force. Drag reduction
at the downstream flag could be optimized by optimizing the Reynolds number, the
streamwise and spanwise gap distances and the bending coefficient of the flexible
flags.

2. Computational model
In this paper, a grouping unit consisting of two flexible bodies was modelled

using two tandem flexible flags in a two-dimensional viscous flow. A schematic
diagram of the configuration and coordinate system is shown in figure 1. The relative
positioning of the two tandem flexible flags was varied by adjusting the streamwise
gap distance Gx and the spanwise gap distance Gy , defined relative to the initial
tail position of the upstream flag. The heads of both upstream and downstream
flags were fixed under a simply supported boundary condition; boundary conditions
for a free end were considered at the tails. An Eulerian coordinate system was
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Figure 1. Schematic diagram of the two tandem flags in viscous flow.

used to describe the uniform flow, and a separate Lagrangian coordinate system
was applied to each flexible flag. The tandem flexible flags in viscous flow were
modelled using an improved version of the immersed boundary method (Huang et al.
2007). The immersed boundary method solved the equations governing fluid flow and
the two flexible flag motions in each coordinate system, and the interactions among
components were calculated using a feedback force law. Huang et al. (2007) simulated
a single flexible filament and two filaments in a side-by-side arrangement in a uniform
flow, assuming inextensibility in the filaments. Because the same method was used
here, with the only difference being the mutual arrangement of the filaments, the
validity of the model will be assumed in the following discussion.

The incompressible viscous fluid flow was described using the Navier–Stokes and
continuity equations, which were non-dimensionalized by the far-field velocity U∞ to
yield the velocity vector u = (u, v) as a function of time t = L/U∞ (where L is the
length of the flag), pressure p = ρ0U

2
∞ (where ρ0 is the fluid volume density) and the

momentum force f = (fx, fy)/(ρ0U
2
∞/L):

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u + f , (2.1)

∇ · u = 0, (2.2)

where the Reynolds number Re is defined by Re = ρ0U∞L/µ and µ is the dynamic
viscosity. Equations (2.1) and (2.2) were solved by using the fractional-step method
with a staggered Cartesian grid system (Kim, Baek & Sung 2002). Similar to the
equations of Huang et al. (2007), the governing equations for the inextensible flexible
flag were non-dimensionalized by the following characteristic scales: the flag length
L defined the unit of length, L/U∞ defined the unit of time, ρ1U

2
∞/L defined the units

of Lagrangian force F (where the flag line density is ρ1 + ρ0A with A the thickness
of flag), ρ1U

2
∞ defined the tension force T and ρ1U

2
∞L2 defined the bending rigidity γ .

The flag motion was, therefore, described by

∂2 X
∂t2

=
∂

∂s

(
T

∂ X
∂s

)
− ∂2

∂s2

(
γ

∂2 X
∂s2

)
− F, (2.3)

where s is the arclength and X =(X(s, t), Y (s, t)) is the position. At the fixed and free
ends, the following boundary conditions were applied:

X = X0,
∂2 X
∂s2

= (0, 0) for the fixed end, (2.4)

T = 0,
∂2 X
∂s2

= (0, 0),
∂3 X
∂s3

= (0, 0) for the free end. (2.5)
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The interaction force between the flow and the structure was calculated using the
feedback force

F = α

∫ t

0

(U ib − U) dτ + β(U ib − U), (2.6)

where α and β are large negative free constants −105 and −103, respectively, in
Huang et al. (2007). U ib is the fluid velocity obtained by interpolation at the immersed
boundary and U is the velocity of the flag expressed by U = dX/dt . The following
interpolation relations between the Eulerian and Lagrangian values are carried out
by the same Dirac delta function as in Huang et al. (2007):

U ib(s, t) =

∫
Ω

u(x, t)δ(X(s, t) − x) dx, (2.7)

f (x, t) =
ρ1

ρ0L

∫
Γ

F(s, t)δ(x − X(s, t)) ds. (2.8)

Note that use of the Dirac delta function smears the fluid–structure interface,
which makes the method unsuitable for high-Reynolds-number flow. However, it has
no difficulty in simulating fluid–structure interactions at Reynolds number of several
hundred, as reported in a series of previous studies (Peskin 2002; Huang et al. 2007;
Shin, Huang & Sung 2008). It should also be noted that selection of large negative
values of α and β in calculating the feedback force (see (2.6)) may result in a stiff
problem (Goldstein, Handler & Sirovich 1993). However, in our improved version of
the immersed boundary method, it was shown that the limitation on the computational
time step can be significantly relieved by selecting the Lagrangian points for velocity
interpolation and the smoothed delta function appropriately (Huang et al. 2007; Shin
et al. 2008).

The computational domain for the fluid flow ranges from −2 to 6 in the streamwise
(x) direction and −4 to 4 in the spanwise (y) direction, which are characterized by
the flag length. The Eulerian grid size for the fluid is 512 × 250 and the Lagrangian
grid size for the flag is 64. The Eulerian grid is uniformly distributed in the x

direction, while in the y direction it is uniform for −1 � y � 1 but is stretched
otherwise. The initial position of the upstream flag is parallel to the streamwise
direction and the downstream one is inclined as much as 0.1π from the streamwise
direction. Even if the inclination is changed to −0.1π, the results after several transient
periods are not changed. The computational time step is set to be 0.0005 in all the
simulations, which results in a Courant number of about 0.1. The flow patterns
were investigated by conducting simulations over a long time period, between 100
and 500 flapping periods, and the flow patterns obtained after a minimum of 20
equilibration flapping periods were analysed. The flow patterns and interaction forces
were characterized by averaging the drag coefficient Cd , the flapping amplitude Atail

and the phase difference between the two flapping flags 
φ (figures 2, 5 and 6).
The quantitative characterizations of the interaction behaviour were supplemented by
qualitative evaluations of the flag deformations (figure 3), the vorticity contours and
the pressure fields within the flow (figure 4), which provide an intuitive understanding
of the vortex–flexible-body interaction. Four parameters were chosen for optimization
within the following ranges: the Reynolds number (200 � Re � 400), the streamwise
(0.1 � Gx � 2.0) and spanwise (−0.45 � Gy � 0.45) gap distances between the flags
and the bending coefficient of the flags (0.001 � γ � 0.008).
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Figure 2. Drag coefficient (Cd ), the flapping amplitude of the tail (Atail ) and the phase
difference between the flapping of the two flags (
φ) as a function of the streamwise gap
distance (Gx) for γ = 0.005 and Gy =0.0. In plots for the phase difference, black squares
indicate the average values of the phase difference and the error bars indicate the minimum
and maximum values: (a) Re = 200 and (b) Re = 400.

3. Results and discussion
The drag coefficient Cd , the flapping amplitude of the tails Atail and the phase

difference between flags 
φ are plotted in figure 2 as a function of the streamwise
gap distance Gx . The plots demonstrate two salient features of the system. The
first salient feature is that the downstream flag experiences drag reduction within a
specific range of the streamwise gap distance, although Ristroph & Zhang (2008)
reported that the flexible flags show the anomalous hydrodynamic drafting in which
the upstream body experiences drag reduction, but the downstream body does not.
For the parameter range 1.05 � Gx � 1.15 and Re = 400 (regime II) in figure 2(b), the
drag coefficient of the downstream flag dropped sharply below that of the upstream
flag. Under such conditions, the drag coefficient of the downstream flag decreased
to as much as 65 % of the upstream drag coefficient. Anomalous hydrodynamic
drafting was observed for Re = 200 across the full range of tested streamwise gap
distances. Although anomalous hydrodynamic drafting was also observed across
a range of small streamwise gap distances (Gx � 1.0) for Re = 400 (regime I in
figure 2b), we propose that drag reduction within regime II in figure 2(b) arose from
an interaction mode that was distinct from that operating at Re =200. The second
salient feature of the system is that anomalous hydrodynamic drafting was observed
for Gx � 1.2, Re =400 (regime III) in figure 2(b). In regime III, the drag increase on
the downstream flag was only 25 %, not as significant as the drag increase observed
in the regime I (75 % increase of the drag on the downstream flag). The mechanism
underlying the reduction in the downstream drag coefficient will be discussed below
in figure 4, considered together with the phase difference between two flags in
figures 2 and 5.

As shown in figure 2, the dependence of the drag coefficient on Gx was similar to
the dependence of the flapping amplitude on Gx , which implied that the drag forces
on the flags were related to the flapping amplitudes: the more widely the flags flapped,
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Figure 3. Traces of the two tandem flags over one period of flapping for γ =0.005, Gx = 1.1
and Gy = 0.0: (a) Re = 200 and (b) Re = 400.

the more drag force they experienced. The relationship between the drag coefficient
and the flapping amplitude was inferred from the shape of the flag deformation, as
shown in figure 3. Each Reynolds number yielded distinct deformation geometries
in the downstream flag, although the shapes of the upstream flag were similar. For
Re = 200, the downstream flag flapped with larger amplitude than the upstream flag
did, in agreement with the results of Ristroph & Zhang (2008). Because the wake
behind the first flag drove synchronization in the flapping of the downstream flag
(Alben 2009), the large flapping amplitude caused the downstream flag to experience
more drag force than the upstream flag. By contrast, at Re = 400, the downstream
flag flapped with a smaller amplitude than the upstream flag, and the head of the
downstream flag encountered a wake with an angle of attack that approached zero.
Therefore, the drag force acting on the downstream flag was reduced relative to the
drag force acting on the upstream flag. It is interesting that the downstream flag
deformations showed different degrees of concavity and convexity at Re =200 and
at Re =400, because the bending coefficients were identical in the two cases. The
different degrees of flag deformations at a constant bending coefficient resulted solely
from variations in the Reynolds number.

Variations in the relative deformations and drag forces in the upstream and
downstream flags can be explained, from a hydrodynamic perspective, as arising from
two interaction modes, as illustrated in figure 4. The interaction between tandem flags
and a flow influences the forces experienced by the flags via one of the two modes:
(i) a constructive mode and (ii) a destructive mode. These interaction modes were
first described by Gopalkrishnan et al. (1994) as part of their investigation of active
vorticity control using a flapping foil behind a circular cylinder in a flow. In that study,
the authors identified three modes of interaction and noted that the cylinder vortices
were repositioned by the suction produced by the foil. In this paper, the constructive
mode describes the situation in which vortices that surround and are shed by the
downstream structure merge with vortices of the same rotational sense produced by
the upstream structure. The act of merging produces vortices of higher strength. In
contrast, the destructive mode describes merging of vortices of the opposite sense,
produced by the upstream and downstream structures. The strength of the merged
vortex is decreased.

As shown in figure 4(c, d ), the positions that experienced the maximum or zero
transverse displacements of the downstream tail, ytail , are marked, respectively, as
A and B within one period of flapping, and these points correspond, respectively,
to the maximum and minimum drag coefficients. Instantaneous vorticity contours
at positions A and B are presented in figure 4(a, b) for both the constructive and
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Figure 4. (Colour online) Two sets of figures are presented in the left and right columns
for the constructive and destructive modes, respectively, for γ = 0.005, Gx = 1.1 and Gy = 0.0:
(a, c) Re = 200 and (b, d ) Re = 400. The column for each mode contains three plots: (a, b) the
instantaneous vorticity contours at the positions A and B; (c, d ) the time history of the drag
coefficient and the transverse displacement of the upstream tail (solid line) and downstream
tail (dashed line), and the pressure field of the flow surrounding the downstream flag at the
position A.

destructive modes. Under the constructive mode, the downstream flag encountered
incoming counter-clockwise vortices, while the flaps were driven by the incoming
vortices. The downstream flapping was not only driven by the vortices produced by
the downstream flag, but also by the incoming vortices, which merged constructively
to increase the amplitude of flapping. Under the destructive mode, however,
counter-clockwise vortices that had been shed from the head of the downstream
flag encountered incoming clockwise vortices, while the flaps were driven by the
incoming vortices. The vortices merged destructively and were subsequently weakened,
decreasing the amplitude of the downstream flag-flapping motion. The drag force was
directly investigated by calculating the pressure field in the flow surrounding the
downstream flag, as shown in figure 4(c, d ). Constructively merged vortices intensified
the restoring force for the flapping of the downstream flag, whereas destructively
merged vortices weakened the restoring force for the flapping motion.

The transition between the two modes was governed by the phase difference that
characterized the periodic motion of the two flags, as shown in figure 2. For simplicity,
the phase difference was defined as a function of the relative transverse displacements
of the flag tails. The phase difference between the motion of the flags dictated the
phase in which the downstream flag encountered the vortices. For Re = 200, the
phase difference depended linearly on the streamwise gap distance and was almost
unchanged. By contrast, Re =400 yielded behaviour within the specific streamwise
gap range of regime II (1.05 � Gx � 1.15 for Re = 400) that differed significantly
from the behaviour observed at Re = 200 in terms of the averaged phase difference,
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Figure 5. Drag coefficient and the phase difference as a function of the streamwise gap
distance for Re = 300, γ = 0.005 and Gy = 0.0. Refer to figure 2 for the meaning of symbols.

although in regime I the behaviour resembled that observed for Re =200. Moreover,
in regime III (Gx � 1.2, Re = 400) the phase difference varied from a value similar
to that observed at Re = 200 to the value plus a factor of π. The instantaneous
vorticity contours demonstrated that the constructive mode was in operation when
the phase difference was similar to that observed for Re = 200 and the destructive
mode was in operation otherwise. In other words, tandem flags experienced alternating
constructive and destructive modes in regime III (Gx � 1.2 and Re = 400) and the
alternating frequency of the modes is inferred from the maximum, minimum and
averaged value of the phase difference in figure 2. Moreover, the destructive mode
produced a stable state for cases in which the averaged value jumped, for example,
in regime II (1.05 � Gx � 1.15 for Re = 400). Depending on whether the system was
characterized by either the stable constructive or destructive modes or whether the
system alternated between modes, the averaged drag coefficient experienced by the
downstream flag increased, decreased or increased by a factor of 1/2, as shown in
figure 2.

Figures 2 and 4 show that the vortex shed from the head of the downstream flag
destabilized the flapping motion and phase shifted the flapping motion for Re = 400.
As a consequence, the vortex shed from the head of the flag initiated the transition
between constructive and destructive modes. For a potential flow, Alben (2009)
showed that the averaged phase difference decreases with a nearly constant slope
as the streamwise gap distance increases, and showed some variation with irregular
flapping of the downstream flag near regimes II and III of this study. Viscosity,
however, smoothes out vortices that are encountered by the downstream flag and
damps out the irregular flapping motion. The downstream flag in a viscous flow shows
a regular flapping under the destructive mode as well as under the constructive mode
in this study. The effect of viscosity is further inspected in figure 5. For Re = 300, the
difference between maximum and minimum values of the phase difference is reduced
in regime III compared with that of Re = 400 in figure 2. In addition, the streamwise
gap distance range for regime II is extended to 1.05 � Gx � 1.32, while regime II is
within 1.05 � Gx � 1.15 for Re = 400. This means that viscosity plays an important
role to make the flapping set in at one of the two modes. Regardless of the initial
inclination of flags, the phase difference varies from the values for the constructive
mode to the values plus a factor of π in regimes II and III for the destructive mode.
After several transient flapping periods, the phase is fixed to the destructive mode
only in regime II, while the phase varies between the values for each mode alternately
in regime III; keeping to one mode in regime II and alternation between two modes
in regime III are strongly influenced by viscosity.
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Figure 6. Drag coefficient variation as a function of the spanwise gap distance, Gy , and the
bending coefficient, γ , for Re = 300 and Gx = 1.1: (a) γ = 0.005 and (b) Gy = 0.0.

The spanwise gap distance, Gy , and the bending coefficient, γ , dictated whether
the downstream flag experienced either the constructive or the destructive mode,
as indicated by the drag coefficient shown in figure 6, calculated for Re = 300 and
Gx = 1.1. For γ =0.005, the flag experienced a drag reduction in the range |Gy | � 0.1.
The bending coefficient γ of the flags described in this study is related to the ratio
between the flag rigidity, R2 and the dimensionless mass of the flag, R1 described in
Alben (2009) by the following relation:

γ =
R2

4R1

. (3.1)

Alben (2009) assumed that R1 = 0.6 and R2 = 0.014, which corresponds to γ = 0.00583
in this paper, and showed some variations as a function of the gap distance. For
R1 = 0.6 and R2 = 0.011 (γ = 0.00458 in this paper), the downstream flag irregularly
flaps with small flapping amplitude and short flapping period regardless of the gap
distance. As shown in Alben (2009), flexible flags cannot sustain regular flapping
motions when forces on the flexible body are put into imbalance as a result of fluid
pressure, viscosity, the flag inertia and the bending coefficient. Therefore, if a flexible
body with an optimal bending coefficient is positioned behind a flexible body in
a flow with an appropriate gap distance, the trailing body can obtain a significant
advantage with respect to drag reduction. For example, fish might have evolved to
optimize their self-adaptive bending coefficients in order to maximize the efficiency of
the vortex–flexible-body interaction modes. Because the present calculation is based
on two-dimensional flow and is restricted to large-Reynolds-number simulations,
quantitative predictions of the parameters that optimize fish manoeuvring cannot be
obtained. This study, however, qualitatively characterized the relationship between
the drag force and the two modes of vortex–flexible-body interaction: (i) the drag
was increased on the downstream body under the constructive mode and (ii) the drag
was reduced on the downstream body under the destructive mode.

4. Conclusions
Two tandem flexible flags in viscous flow were modelled by numerical simulation

using an improved version of the immersed boundary method. The downstream flag
experienced a range of conditions as a function of the streamwise and spanwise gap
distances, and the bending coefficient for 200 � Re � 400. In addition to the drag
increase predicted by previous studies, the drag on the downstream flexible body was
found to decrease within a specific range of parameters. The drag on the downstream
body was found to result from the interaction between the vortices and the flexible
flag. The position at which vortices were shed by a downstream flag was affected
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by the flag flexibility and the deformation. Vortices shed at the head of a flag
destabilized the flapping motion by interacting with the wake of the upstream flag.
Therefore, the phase with which the downstream flag encountered vortices varied,
and different modes of interaction (constructive and destructive modes) between
vortices and a flexible flag were observed. In this study, the two interaction modes
produced opposite effects on the drag force experienced by the downstream flag: (i)
the constructive mode increased the drag and (ii) the destructive mode decreased
the drag. The relationship between the drag force and the interaction modes of the
vortex–flexible-body system suggests a mechanism for the advantages gained by the
hydrodynamic manoeuvring in schools of flexible bodies.

This work was supported by the Creative Research Initiatives (Center for Opto–
Fluid–Flexible Body Interaction) and the World Class University (WCU) program of
MEST/NRF.
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